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Scenario

A gambler who starts with x dollars plays the following game. At each
gamble,

the gambler wins $1 with probability 1
2 or

the gambler loses $1 with probability 1
2

The gambler keeps playing until they either run out of money or reach
a goal of winning N dollars.

This scenario is known as the gambler’s ruin problem, first posed
by Pascal in 1656 in a letter to Fermat.
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Let f(x) be the probability that the gambler exists the game as a
winner starting with x dollars. For 0 < x < N , this probability satisfies

f(x) =
1

2
f(x− 1) +

1

2
f(x + 1), f(0) = 0, f(N) = 1.

Solution: f(x) = x
N .
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Different Probabilities

Consider extending the game so that the probability of losing one
dollar or winning one dollar are not the same.
In other words, let p be the probability of winning one dollar, and
q = 1− p be the probability of losing one dollar.
For the probability, we get

f(x) = qf(x− 1) + pf(x + 1), f(0) = 0, f(N) = 1, and p + q = 1.

Solution:

f(x) =
1−

(
q
p

)x
1−

(
q
p

)N
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Scenario

Restatement: A particle starts at a point x on a line segment of length
N where 0 < x < N . The particle moves to the left from x to x− 1
with probability 1

2 , or to the right from x to x + 1 with probability 1
2 .

Let’s add a third step (mirror step): A particle can now move from x
to

1 x− 1 with probability q1, or

2 x + 1 with probability q2, or

3 N − x with probability p

where p + q1 + q2 = 1.

We will focus on the case when q1 = q2 = 1−p
2 (symmetric case).
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If p = 1
3 then the particle can move from x to

1 x− 1 with probability 1−p
2 = 1

3 , or

2 x + 1 with probability 1−p
2 = 1

3 , or

3 N − x with probability p = 1
3

Let N = 5 and x = 3, then in the next round, we have the following
picture
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g(x) =
1− p

2
g(x− 1) +

1− p

2
g(x + 1) + pg(N − x) + 1,

where g(0) = 0, g(N) = 0.
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Expected Duration (3)

Expected duration of ending at 0 or N
starting at x

N x = 1 x = 2 x = 3 x = 4 x = 5

1 0

2 1

3 2 2

4 3 4 3

5 4 6 6 4

6 5 8 9 8 5

Expected duration of ending at 0 or N
starting at x when p = 1/2

N x = 1 x = 2 x = 3 x = 4 x = 5

1 0

2 2

3 4 4

4 6 8 6

5 8 12 12 8

6 10 16 18 16 10



Expected Duration

Theorem (1)

Consider the generalization of the gambler’s ruin problem when we add
a mirror step. Then, the expected duration of ending at 0 or N starting
at x is given by

g(x) =
1

1− p
x(N − x)

whenever we restrict the particle moves by either moving from x to
x− 1 with probability q1, or from x to x + 1 with probability q2, or
jumps to N − x with probability p where q1 = q2 = 1−p

2 .

Remark: When p = 0, Theorem (1) recovers the formula for the
expected duration of the classical gambler’s ruin game.
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What about the probability that a particle starting at x will eventually
reach N?
Define f(x) = f

(p)
N (x) as the probability that a particle starting at x

will eventually reach N . For 0 < x < N , this probability satisfies the
recurrence relation

f(x) =
1− p

2
f(x− 1) +

1− p

2
f(x + 1) + pf(N − x)

where f(0) = 0 and f(N) = 1.
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2 then the recurrence is

f(x) =
1

4
f(x− 1) +

1

4
f(x + 1) +

1

2
f(N − x), f(0) = 0, f(N) = 1.

Let’s compute some examples by varying N :

Probability of ending at N starting at x
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Example (continued)

Probability of ending at N starting at x

N x = 1 x = 2 x = 3 x = 4 x = 5

1 1

2 1/2

3 1/3 2/3

4 1/4 1/2 3/4

5 1/5 2/5 3/5 4/5

6 1/6 1/3 1/2 2/3 5/6

Probability of ending at N starting at x
when p = 1/2

N x = 1 x = 2 x = 3 x = 4 x = 5

1 1

2 1/2

3 3/7 4/7

4 5/12 1/2 7/12

5 17/41 20/41 21/41 24/41

6 29/70 17/35 1/2 18/35 41/70
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Experiments

We will try to guess the limit as N →∞ of the probability when the
particle starts at some x and ends at N . We are interested in

lim
N→∞

f
(p)
N (x)

Example

Let N = 100, x = 1 and set p = 1
k for k ∈ {2, 3, . . . , 9}.

p lim
N→∞

f
(p)
100(1)

1/2 0.4142135624

1/3 0.3660254038

1/4 0.3333333333

1/5 0.3090169944

1/6 0.2898979486

1/7 0.2742918852

1/8 0.2612038750

1/9 0.2500000000
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Experiments (3)

What does this suggest?

p lim
N→∞

f
(p)
100(1)

1/2
√

2− 1

1/3
√
3−1
2

1/4 1
3

1/5
√
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4

1/6
√
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5
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√
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7
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4

It suggests that the probability of the particle starting at x = 1 and
ending at 100 converges to some number!
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lim
N→∞

f
(p)
N (1) =

√
p− p

1− p
.
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Guess (x = N − 1)

If the particle starts at x = N − 1, then

lim
N→∞

f
(p)
N (N − 1) =

1−√p
1− p

.

From previous slide,

Guess (x = 1)

If the particle starts at x = 1, then

lim
N→∞

f
(p)
N (1) =

√
p− p

1− p
.
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Guess (x = 2)

If the particle starts at x = 2, then

lim
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f
(p)
N (2) =

2
√
p(1 + p− 2

√
p)

(1− p)2
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Guess (x = 2)

If the particle starts at x = 2, then

lim
N→∞

f
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N (2) =

2
√
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√
p)

(1− p)2
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f
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(1 + p)(1 + p− 2
√
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Guess (x = 2)

If the particle starts at x = 2, then

lim
N→∞

f
(p)
N (2) =

2
√
p(1 + p− 2

√
p)

(1− p)2
.

Guess (x = N − 2)

If the particle starts at x = N − 2, then

lim
N→∞

f
(p)
N (N − 2) =

(1 + p)(1 + p− 2
√
p)

(1− p)2
.

Check that the sum (of the numerators) equals (p− 1)2.



Pattern

Set p = 1
k2

for some positive integer k. Moreover, let p = n2 (some
squared rational number).



Pattern

Set p = 1
k2

for some positive integer k. Moreover, let p = n2 (some
squared rational number).
Let us look at squared p values:

p lim
N→∞

f
(p)
100(1)

1/22 1
3

1/32 1
4

1/42 1
5

1/52 1
6



Pattern

Set p = 1
k2

for some positive integer k. Moreover, let p = n2 (some
squared rational number).
Let us look at squared p values:

p lim
N→∞

f
(p)
100(1)

1/22 1
3

1/32 1
4

1/42 1
5

1/52 1
6

We can conjecture that limN→∞ f
(p)
N (1) = 1

k+1 but k = 1√
p and p = n2.

Together,

lim
N→∞

f
(p)
N (1) =

n

n + 1
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Pattern (2)

You might be wondering, why do all of that?

x = 1 n
n+1

1
n+1 x = N − 1

x = 2 2n
(n+1)2

n2+1
(n+1)2

x = N − 2

x = 3 n3+3n
(n+1)3

3n2+1
(n+1)3

x = N − 3

x = 4 4n3+4n
(n+1)4

n4+6n2+1
(n+1)4

x = N − 4
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√
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Binomial Theorem (2)

We are interested in the following when x = n(=
√
p)

1

(x + 1)k

b k−1
2
c∑

i=0

(
k

2i

)
xk−2i

Check: Plug in k = 3 and x = n

1

(n + 1)3

1∑
i=0

(
3

2i

)
n3−2i =

n3 + 3n

(n + 1)3

x = 1 n
n+1

1
n+1 x = N − 1

x = 3 n3+3n
(n+1)3

3n2+1
(n+1)3

x = N − 3

Turns out the odd part yields the same closed form from above.



Result

Corollary

If the particle starts at some x where 0 < x < N , then

lim
N→∞

f
(p)
N (x) =

1

2
− 1

2

(
1−√p
1 +
√
p

)x

whenever we restrict the particle moves by either moving from x to
x− 1 with probability q1, or from x to x + 1 with probability q2, or from
x to N − x with probability p where q1 = q2 = 1−p

2 .



Miracle

Lemma

Consider the symmetric case when

f(x) =
1− p

2
f(x− 1) +

1− p

2
f(x + 1) + pf(N − x)

with boundary conditions f(0) = 0, f(N) = 1 for some 0 < p < 1. For
any 0 ≤ x ≤ N , the following identity holds

f(x) + f(N − x) = 1.
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Proof

Lemma

For any 0 ≤ x ≤ N , the following identity holds

f(x) + f(N − x) = 1

when we consider the symmetric case only!

Proof (Sketch).

Consider f(x) = 1− f(N − x). Then,
f(x) := probability of ending at N (starting at x) and
f(N − x) := probability of ending at N (starting at N − x)
=⇒ 1− f(N − x) := probability of ending at 0 (starting at N − x).
The distance of both random walks is N − x.
Hence, f(x) = 1− f(N − x).



Recurrence Relation

Since f(N − x) = 1− f(x), then we can rewrite the recurrence relation
as follows

f(x) =
p

1 + p
+

1

2

(
1− p

1 + p

)
f(x− 1) +

1

2

(
1− p

1 + p

)
f(x + 1)

where f(0) = 0, f(N) = 1.
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Future Work

For the probability and expected duration: It is an open problem to
give formulas for general q1, q2 and p.

Computational evidence suggests the following conjecture when the
probability of moving from x to x− 1 is the same as the probability of
moving from x to N − x.

Conjecture

Consider the generalization of the gambler’s ruin problem when we add
a mirror step. If the particle starts at x = 1, then

lim
N→∞

f
(p)
N (1) =

√
(p + 1)(1− 3p + 4p2)− (1− 2p)(p + 1)

2p(p + 1)

whenever we restrict the particle moves by either moving from x to
x− 1 with probability q1, or from x to x + 1 with probability p, or from
x to N − x with probability q2 where q1 = q2 = 1−p

2 .
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Probability Formula

Theorem

Consider the generalization of the gambler’s ruin problem when we add
a mirror step. Then, the probability of ending at N starting at x is
given by

f(x) =
1

2

(
1−√p
1+
√
p

)N
+ 1(

1+
√
p

1−√p

)N
−
(
1−√p
1+
√
p

)N (1 +
√
p

1−√p

)x

+
1

2

(
1+
√
p

1−√p

)N
+ 1(

1−√p
1+
√
p

)N
−
(
1+
√
p

1−√p

)N (1−√p
1 +
√
p

)x

+
1
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