The Power of Computation

Lucy Martinez
Rutgers University
October 18, 2023

Advisor: Dr. Doron Zeilberger

About Me

About Me

About Me

About Me

Game 1: Dice Problem

Dice Rolls

Suppose you have a fair standard die:

Dice Rolls

Suppose you have a fair standard die:

- Faces: $\{1,2,3,4,5,6\}$

Dice Rolls

Suppose you have a fair standard die:

- Faces: $\{1,2,3,4,5,6\}$

- Set $s=0$. Roll the die and add the outcome to s

Dice Rolls

Suppose you have a fair standard die:

- Faces: $\{1,2,3,4,5,6\}$

- Set $s=0$. Roll the die and add the outcome to s
- Keep rolling the die, add the outcome to s, and stop when s is a prime number

Example

Set $s=0$, and let's roll a die:

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$

Example

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$

- Roll again: say we get a 6 , then $s=4+6=10$

Example

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$

- Roll again: say we get a 6 , then $s=4+6=10$
- Roll again: say we get a 3 , then $s=10+3=13$ (prime!)

Example

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$

- Roll again: say we get a 6 , then $s=4+6=10$
- Roll again: say we get a 3 , then $s=10+3=13$ (prime!)

Total rolls: 3

Example 2

Set $s=0$, and let's roll a die:

Example 2

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$
- Roll again: say we get a 6 , then $s=4+6=10$

Example 2

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$
- Roll again: say we get a 6 , then $s=4+6=10$
- Roll again: say we get a 4 , then $s=10+4=14$

Example 2

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$
- Roll again: say we get a 6 , then $s=4+6=10$
- Roll again: say we get a 4 , then $s=10+4=14$
- Keep rolling the die, and pretend we only got even numbers!

Example 2

Set $s=0$, and let's roll a die:

- Say we get a 4 , then $s=4$
- Roll again: say we get a 6 , then $s=4+6=10$
- Roll again: say we get a 4 , then $s=10+4=14$
- Keep rolling the die, and pretend we only got even numbers!
- We would not be able to get a prime sum.

More Probabilities

- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:
- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$

- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$
How can we get a prime sum if $s=1, s=4$ or $s=6$?

- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$
How can we get a prime sum if $s=1, s=4$ or $s=6$?

- If $s=1$, we must roll: $\{1,2,4,6\}$. Probability to get a prime sum is $1 / 6 \cdot 4 / 6=1 / 9$
- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$
How can we get a prime sum if $s=1, s=4$ or $s=6$?

- If $s=1$, we must roll: $\{1,2,4,6\}$. Probability to get a prime sum is $1 / 6 \cdot 4 / 6=1 / 9$
- If $s=4$, we must roll: $\{1,3\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$
How can we get a prime sum if $s=1, s=4$ or $s=6$?

- If $s=1$, we must roll: $\{1,2,4,6\}$. Probability to get a prime sum is $1 / 6 \cdot 4 / 6=1 / 9$
- If $s=4$, we must roll: $\{1,3\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
- If $s=6$, we must roll: $\{1,5\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$
How can we get a prime sum if $s=1, s=4$ or $s=6$?

- If $s=1$, we must roll: $\{1,2,4,6\}$. Probability to get a prime sum is $1 / 6 \cdot 4 / 6=1 / 9$
- If $s=4$, we must roll: $\{1,3\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
- If $s=6$, we must roll: $\{1,5\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
The probability that the game lasts 2 rounds is $1 / 9+1 / 18+1 / 18=2 / 9$
- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$
How can we get a prime sum if $s=1, s=4$ or $s=6$?

- If $s=1$, we must roll: $\{1,2,4,6\}$. Probability to get a prime sum is $1 / 6 \cdot 4 / 6=1 / 9$
- If $s=4$, we must roll: $\{1,3\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
- If $s=6$, we must roll: $\{1,5\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
The probability that the game lasts 2 rounds is

$$
1 / 9+1 / 18+1 / 18=2 / 9
$$

With probability $1-1 / 2-2 / 9=5 / 18$, you need to continue

Question
How long, in average, would it take until we hit a prime?

Question

How long, in average, would it take until we hit a prime?

In other words, what is the expectation of the random variable "duration of the prime-seeking" game?

Question

How long, in average, would it take until we hit a prime?

In other words, what is the expectation of the random variable "duration of the prime-seeking" game?

Alon-Malinovsky (2022)

The expectation of this random variable (up to an additive error of less than 10^{-4}) is 2.484

Let $E(\tau)$ be the expectation of the hitting time τ where the sum first hits a prime number.

Let $E(\tau)$ be the expectation of the hitting time τ where the sum first hits a prime number.

- Want to find K such that E_{K} is close to $E(\tau)$. Here, E_{K} is an approximation to the expectation of hitting a prime (up to an additive error)

Let $E(\tau)$ be the expectation of the hitting time τ where the sum first hits a prime number.

- Want to find K such that E_{K} is close to $E(\tau)$. Here, E_{K} is an approximation to the expectation of hitting a prime (up to an additive error)
- To estimate E_{K}, we find the first K values, $p(1), p(2), \cdots, p(K)$

Let $E(\tau)$ be the expectation of the hitting time τ where the sum first hits a prime number.

- Want to find K such that E_{K} is close to $E(\tau)$. Here, E_{K} is an approximation to the expectation of hitting a prime (up to an additive error)
- To estimate E_{K}, we find the first K values, $p(1), p(2), \cdots, p(K)$ where

$$
p(k+1)=\sum_{n: k \leq n \leq 6 k} p(k, n)
$$

for non-prime n

Let $E(\tau)$ be the expectation of the hitting time τ where the sum first hits a prime number.

- Want to find K such that E_{K} is close to $E(\tau)$. Here, E_{K} is an approximation to the expectation of hitting a prime (up to an additive error)
- To estimate E_{K}, we find the first K values, $p(1), p(2), \cdots, p(K)$ where

$$
p(k+1)=\sum_{n: k \leq n \leq 6 k} p(k, n)
$$

for non-prime n

- Turns out: $E_{1000}=2.4284$ is a good approximation (Alon-Malinovsky)

Questions

- What if you do not start at 0 , but later on?

Questions

- What if you do not start at 0 , but later on? For example, say you want to start at 10^{10} (non-prime), how long, on average, would it take you until you hit a prime?
- What if you do not start at 0 , but later on? For example, say you want to start at 10^{10} (non-prime), how long, on average, would it take you until you hit a prime?
- What if instead of a standard die with six faces, you have a different number of faces?
- What if you do not start at 0 , but later on? For example, say you want to start at 10^{10} (non-prime), how long, on average, would it take you until you hit a prime?
- What if instead of a standard die with six faces, you have a different number of faces?
- What if instead of trying to hit a prime, you want to hit your favorite numbers?

Questions

- What if you do not start at 0 , but later on? For example, say you want to start at 10^{10} (non-prime), how long, on average, would it take you until you hit a prime?
- What if instead of a standard die with six faces, you have a different number of faces?
- What if instead of trying to hit a prime, you want to hit your favorite numbers? Say a product of two distinct primes, product of three distinct primes, perfect square (starting at a non-square), etc.

Our Approach: Symbolic Computation

Let $\boldsymbol{q}(\boldsymbol{k}, \boldsymbol{n})$ be the probability that the game ended after k rounds and that the running sum then was the prime n.

Let $\boldsymbol{q}(\boldsymbol{k}, \boldsymbol{n})$ be the probability that the game ended after k rounds and that the running sum then was the prime n. Then, for a given finite maximal number of rounds R :

Symbolic Computation

Let $\boldsymbol{q}(\boldsymbol{k}, \boldsymbol{n})$ be the probability that the game ended after k rounds and that the running sum then was the prime n. Then, for a given finite maximal number of rounds R :

$$
F_{R}(t, x):=\sum_{k=1}^{R}\left(\sum_{\substack{k \leq n \leq 6 k \\ n \text { prime }}} q(k, n) x^{n}\right) t^{k}
$$

Symbolic Computation

Let $\boldsymbol{q}(\boldsymbol{k}, \boldsymbol{n})$ be the probability that the game ended after k rounds and that the running sum then was the prime n. Then, for a given finite maximal number of rounds R :

$$
F_{R}(t, x):=\sum_{k=1}^{R}\left(\sum_{\substack{k \leq n \leq 6 k \\ n \text { prime }}} q(k, n) x^{n}\right) t^{k}
$$

Here, $F_{R}(t, x)$ is a generating function that encodes the game:

Let $\boldsymbol{q}(\boldsymbol{k}, \boldsymbol{n})$ be the probability that the game ended after k rounds and that the running sum then was the prime n. Then, for a given finite maximal number of rounds R :

$$
F_{R}(t, x):=\sum_{k=1}^{R}\left(\sum_{\substack{k \leq n \leq 6 k \\ n \text { prime }}} q(k, n) x^{n}\right) t^{k}
$$

Here, $F_{R}(t, x)$ is a generating function that encodes the game:
For each k between 1 and R, we compute the probability that the game ended at the running prime sum n.

Let $\boldsymbol{q}(\boldsymbol{k}, \boldsymbol{n})$ be the probability that the game ended after k rounds and that the running sum then was the prime n. Then, for a given finite maximal number of rounds R :

$$
F_{R}(t, x):=\sum_{k=1}^{R}\left(\sum_{\substack{k \leq n \leq 6 k \\ n \text { prime }}} q(k, n) x^{n}\right) t^{k}
$$

Here, $F_{R}(t, x)$ is a generating function that encodes the game:
For each k between 1 and R, we compute the probability that the game ended at the running prime sum n.
Observe that $F(1,1)=1$ (sum of all the probabilities).

Let $\boldsymbol{q}(\boldsymbol{k}, \boldsymbol{n})$ be the probability that the game ended after k rounds and that the running sum then was the prime n. Then, for a given finite maximal number of rounds R :

$$
F_{R}(t, x):=\sum_{k=1}^{R}\left(\sum_{\substack{k \leq n \leq 6 k \\ n \text { prime }}} q(k, n) x^{n}\right) t^{k}
$$

Here, $F_{R}(t, x)$ is a generating function that encodes the game:
For each k between 1 and R, we compute the probability that the game ended at the running prime sum n.
Observe that $F(1,1)=1$ (sum of all the probabilities).
We used Maple to implement this function.

Symbolic Computation (continued)

- To compute $F_{R}(t, x)$: Define $P(x)=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
- To compute $F_{R}(t, x)$: Define $P(x)=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
- We need the operator \mathcal{P} defined on polynomials such that it extracts the terms with prime exponents.

Symbolic Computation (continued)

- To compute $F_{R}(t, x)$: Define $P(x)=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
- We need the operator \mathcal{P} defined on polynomials such that it extracts the terms with prime exponents.

Example

$$
\mathcal{P}\left(x^{3}+3 x^{4}+8 x^{5}\right)=x^{3}+8 x^{5}
$$

Symbolic Computation (continued)

- To compute $F_{R}(t, x)$: Define $P(x)=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
- We need the operator \mathcal{P} defined on polynomials such that it extracts the terms with prime exponents.

Example

$$
\mathcal{P}\left(x^{3}+3 x^{4}+8 x^{5}\right)=x^{3}+8 x^{5}
$$

- We will also need some sequence of polynomials $N_{R}(x)$ and $S_{R}(x)$:

Symbolic Computation (continued)

- To compute $F_{R}(t, x)$: Define $P(x)=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
- We need the operator \mathcal{P} defined on polynomials such that it extracts the terms with prime exponents.

Example

$$
\mathcal{P}\left(x^{3}+3 x^{4}+8 x^{5}\right)=x^{3}+8 x^{5}
$$

- We will also need some sequence of polynomials $N_{R}(x)$ and $S_{R}(x)$:

$$
S_{0}(x):=1
$$

Symbolic Computation (continued)

- To compute $F_{R}(t, x)$: Define $P(x)=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
- We need the operator \mathcal{P} defined on polynomials such that it extracts the terms with prime exponents.

Example

$$
\mathcal{P}\left(x^{3}+3 x^{4}+8 x^{5}\right)=x^{3}+8 x^{5}
$$

- We will also need some sequence of polynomials $N_{R}(x)$ and $S_{R}(x)$:

$$
\begin{aligned}
S_{0}(x) & :=1 \\
N_{R}(x) & :=\mathcal{P}\left(P(x) S_{R-1}(x)\right)
\end{aligned}
$$

Symbolic Computation (continued)

- To compute $F_{R}(t, x)$: Define $P(x)=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
- We need the operator \mathcal{P} defined on polynomials such that it extracts the terms with prime exponents.

Example

$$
\mathcal{P}\left(x^{3}+3 x^{4}+8 x^{5}\right)=x^{3}+8 x^{5}
$$

- We will also need some sequence of polynomials $N_{R}(x)$ and $S_{R}(x)$:

$$
\begin{aligned}
S_{0}(x) & :=1 \\
N_{R}(x) & :=\mathcal{P}\left(P(x) S_{R-1}(x)\right) \\
S_{R}(x) & :=P(x) S_{R-1}(x)-N_{R}(x)
\end{aligned}
$$

Symbolic Computation (continued)

- To compute $F_{R}(t, x)$: Define $P(x)=\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right)$.
- We need the operator \mathcal{P} defined on polynomials such that it extracts the terms with prime exponents.

Example

$$
\mathcal{P}\left(x^{3}+3 x^{4}+8 x^{5}\right)=x^{3}+8 x^{5}
$$

- We will also need some sequence of polynomials $N_{R}(x)$ and $S_{R}(x)$:

$$
\begin{aligned}
S_{0}(x) & :=1 \\
N_{R}(x) & :=\mathcal{P}\left(P(x) S_{R-1}(x)\right) \\
S_{R}(x) & :=P(x) S_{R-1}(x)-N_{R}(x) \\
F_{R}(t, x) & :=F_{R-1}(t, x)+N_{R}(x) t^{R} .
\end{aligned}
$$

First Two Rounds

- First Round
- First Round

$$
S_{0}(x)=1
$$

- First Round

$$
\begin{aligned}
& S_{0}(x)=1 \\
& N_{1}(x)=\mathcal{P}\left(P(x) S_{0}(x)\right)
\end{aligned}
$$

- First Round

$$
\begin{aligned}
S_{0}(x) & =1 \\
N_{1}(x) & =\mathcal{P}\left(P(x) S_{0}(x)\right) \\
& =\mathcal{P}\left(\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \cdot 1\right)
\end{aligned}
$$

- First Round

$$
\begin{aligned}
S_{0}(x) & =1 \\
N_{1}(x) & =\mathcal{P}\left(P(x) S_{0}(x)\right) \\
& =\mathcal{P}\left(\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \cdot 1\right) \\
& =\frac{1}{6}\left(x^{2}+x^{3}+x^{5}\right)
\end{aligned}
$$

- First Round

$$
\begin{aligned}
S_{0}(x) & =1 \\
N_{1}(x) & =\mathcal{P}\left(P(x) S_{0}(x)\right) \\
& =\mathcal{P}\left(\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \cdot 1\right) \\
& =\frac{1}{6}\left(x^{2}+x^{3}+x^{5}\right) \\
S_{1}(x) & =P(x) S_{0}(x)-N_{1}(x)=\frac{1}{6}\left(x+x^{4}+x^{6}\right)
\end{aligned}
$$

- First Round

$$
\begin{aligned}
S_{0}(x) & =1 \\
N_{1}(x) & =\mathcal{P}\left(P(x) S_{0}(x)\right) \\
& =\mathcal{P}\left(\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \cdot 1\right) \\
& =\frac{1}{6}\left(x^{2}+x^{3}+x^{5}\right) \\
S_{1}(x) & =P(x) S_{0}(x)-N_{1}(x)=\frac{1}{6}\left(x+x^{4}+x^{6}\right) \\
\Longrightarrow F_{1}(t, x) & =\left(\frac{1}{6}\left(x^{2}+x^{3}+x^{5}\right)\right) t
\end{aligned}
$$

First Two Rounds (continued)

- Second Round

First Two Rounds (continued)

- Second Round

$$
N_{2}(x)=\mathcal{P}\left(P(x) S_{1}(x)\right)
$$

- Second Round

$$
N_{2}(x)=\mathcal{P}\left(P(x) S_{1}(x)\right)
$$

$$
=\mathcal{P}\left(\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \cdot \frac{1}{6}\left(x+x^{4}+x^{6}\right)\right)
$$

- Second Round

$$
\begin{aligned}
N_{2}(x) & =\mathcal{P}\left(P(x) S_{1}(x)\right) \\
& =\mathcal{P}\left(\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \cdot \frac{1}{6}\left(x+x^{4}+x^{6}\right)\right) \\
& =\frac{1}{36} x^{2}+\frac{1}{36} x^{3}+\frac{1}{18} x^{5}+\frac{1}{12} x^{7}+\frac{1}{36} x^{11}
\end{aligned}
$$

- Second Round

$$
\begin{aligned}
N_{2}(x) & =\mathcal{P}\left(P(x) S_{1}(x)\right) \\
& =\mathcal{P}\left(\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \cdot \frac{1}{6}\left(x+x^{4}+x^{6}\right)\right) \\
& =\frac{1}{36} x^{2}+\frac{1}{36} x^{3}+\frac{1}{18} x^{5}+\frac{1}{12} x^{7}+\frac{1}{36} x^{11} \\
S_{2}(x) & =\frac{1}{36} x^{4}+\frac{1}{18} x^{6}+\frac{1}{18} x^{8}++\frac{1}{18} x^{9}+\frac{1}{18} x^{10}+\frac{1}{36} x^{12}
\end{aligned}
$$

- Second Round

$$
\begin{aligned}
N_{2}(x) & =\mathcal{P}\left(P(x) S_{1}(x)\right) \\
& =\mathcal{P}\left(\frac{1}{6}\left(x+x^{2}+x^{3}+x^{4}+x^{5}+x^{6}\right) \cdot \frac{1}{6}\left(x+x^{4}+x^{6}\right)\right) \\
& =\frac{1}{36} x^{2}+\frac{1}{36} x^{3}+\frac{1}{18} x^{5}+\frac{1}{12} x^{7}+\frac{1}{36} x^{11} \\
S_{2}(x) & =\frac{1}{36} x^{4}+\frac{1}{18} x^{6}+\frac{1}{18} x^{8}++\frac{1}{18} x^{9}+\frac{1}{18} x^{10}+\frac{1}{36} x^{12} \\
\Longrightarrow & F_{2}(t, x)=\left(\frac{1}{6}\left(x^{2}+x^{3}+x^{5}\right)\right) t \\
& +\left(\frac{1}{36} x^{2}+\frac{1}{36} x^{3}+\frac{1}{18} x^{5}+\frac{1}{12} x^{7}+\frac{1}{36} x^{11}\right) t^{2}
\end{aligned}
$$

- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$
How can we get a prime sum if $s=1, s=4$ or $s=6$?

- If $s=1$, we must roll: $\{1,2,4,6\}$. Probability to get a prime sum is $1 / 6 \cdot 4 / 6=1 / 9$
- If $s=4$, we must roll: $\{1,3\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
- If $s=6$, we must roll: $\{1,5\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
The probability that the game lasts 2 rounds is $1 / 9+1 / 18+1 / 18=2 / 9$
- First roll: $\{2,3,5\}$, and with probability $1 / 2$ the game lasts one round
- Second roll:

Possible outcomes in the first round: $\{1,4,6\}$
How can we get a prime sum if $s=1, s=4$ or $s=6$?

- If $s=1$, we must roll: $\{1,2,4,6\}$. Probability to get a prime sum is $1 / 6 \cdot 4 / 6=1 / 9$
- If $s=4$, we must roll: $\{1,3\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
- If $s=6$, we must roll: $\{1,5\}$. Probability to get a prime sum is $1 / 6 \cdot 2 / 6=1 / 18$
The probability that the game lasts 2 rounds is $1 / 9+1 / 18+1 / 18=\mathbf{2 / 9}$
Note: The coefficient of $F_{2}(t, x)$ at t^{2} was

$$
\frac{1}{36} x^{2}+\frac{1}{36} x^{3}+\frac{1}{18} x^{5}+\frac{1}{12} x^{7}+\frac{1}{36} x^{11}
$$

Non-rigorous Estimates - Results

Number of Faces	Property	Expected Duration
7	prime sum	$2.1364 \cdots$
12	prime sum	$3.0814 \cdots$
6	product of two distinct primes	$3.7889 \cdots$
6	product of three distinct primes	$17.616887 \cdots$
6	product of four distinct primes	$112.907872 \cdots$
6	perfect square	$9.01861 \cdots$

Number of Faces	Property	Expected Duration
7	prime sum	$2.1364 \cdots$
12	prime sum	$3.0814 \cdots$
6	product of two distinct primes	$3.7889 \cdots$
6	product of three distinct primes	$17.616887 \cdots$
6	product of four distinct primes	$112.907872 \cdots$
6	perfect square	$9.01861 \cdots$

Note: To find the expected duration, we compute the partial derivative with respect to t of $F_{R}(t, x)$, evaluate at $t=x=1$, and then divide by $F_{R}(1,1)$.

Game 2: St. Petersburg Paradox

Background

- Say that we are tossing a coin $\Longrightarrow\{H, T\}$.
- Say that we are tossing a coin $\Longrightarrow\{H, T\}$.
- If it lands on Heads \Longrightarrow we get $\$ 2$ and stop playing.
- Say that we are tossing a coin $\Longrightarrow\{H, T\}$.
- If it lands on Heads \Longrightarrow we get $\$ 2$ and stop playing.
- Otherwise, we toss the coin again.
- Say that we are tossing a coin $\Longrightarrow\{H, T\}$.
- If it lands on Heads \Longrightarrow we get $\$ 2$ and stop playing.
- Otherwise, we toss the coin again.
- If it lands on Heads \Longrightarrow we get $\$ 4$ and stop playing.
- Say that we are tossing a coin $\Longrightarrow\{H, T\}$.
- If it lands on Heads \Longrightarrow we get $\$ 2$ and stop playing.
- Otherwise, we toss the coin again.
- If it lands on Heads \Longrightarrow we get $\$ 4$ and stop playing.

Otherwise, we toss the coin again. And so on.

- Say that we are tossing a coin $\Longrightarrow\{H, T\}$.
- If it lands on Heads \Longrightarrow we get $\$ 2$ and stop playing.
- Otherwise, we toss the coin again.
- If it lands on Heads \Longrightarrow we get $\$ 4$ and stop playing. Otherwise, we toss the coin again. And so on.
- The rewards doubles each time.
- Say that we are tossing a coin $\Longrightarrow\{H, T\}$.
- If it lands on Heads \Longrightarrow we get $\$ 2$ and stop playing.
- Otherwise, we toss the coin again.
- If it lands on Heads \Longrightarrow we get $\$ 4$ and stop playing. Otherwise, we toss the coin again. And so on.
- The rewards doubles each time.
- Expected gain:

$$
\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 4+\frac{1}{8} \cdot 8+\cdots=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \cdot 2^{i}=\infty
$$

- Say that we are tossing a coin $\Longrightarrow\{H, T\}$.
- If it lands on Heads \Longrightarrow we get $\$ 2$ and stop playing.
- Otherwise, we toss the coin again.
- If it lands on Heads \Longrightarrow we get $\$ 4$ and stop playing. Otherwise, we toss the coin again. And so on.
- The rewards doubles each time.
- Expected gain:

$$
\frac{1}{2} \cdot 2+\frac{1}{4} \cdot 4+\frac{1}{8} \cdot 8+\cdots=\sum_{i=1}^{\infty} \frac{1}{2^{i}} \cdot 2^{i}=\infty
$$

We would want to pay any amount A since $\infty-A=\infty$.

Fix a positive integer k and suppose the gambler lasted all k rounds. Then, the expected gain is

Fix a positive integer k and suppose the gambler lasted all k rounds. Then, the expected gain is

$$
\sum_{i=1}^{k} \frac{1}{2^{i}} \cdot 2^{i}+\frac{1}{2^{k}} \cdot 2^{k}=\sum_{i=1}^{k+1} 1=k+1
$$

Fix a positive integer k and suppose the gambler lasted all k rounds. Then, the expected gain is

$$
\sum_{i=1}^{k} \frac{1}{2^{i}} \cdot 2^{i}+\frac{1}{2^{k}} \cdot 2^{k}=\sum_{i=1}^{k+1} 1=k+1
$$

In this case, if the gambler pays any amount A, then to ensure they do not lose money, $A<k+1$.

For a given risk-averseness (the maximum probability of not winning), how many rounds exactly should the gambler insist on playing?

Question

For a given risk-averseness (the maximum probability of not winning), how many rounds exactly should the gambler insist on playing?

- Simulation

For a given risk-averseness (the maximum probability of not winning), how many rounds exactly should the gambler insist on playing?

- Simulation
- Symbolic Computation

For a given risk-averseness (the maximum probability of not winning), how many rounds exactly should the gambler insist on playing?

- Simulation
- Symbolic Computation
- Central Limit Theorem

First, gambler decides the number of times to play $\Longrightarrow n$.

First, gambler decides the number of times to play $\Longrightarrow n$. We implement the following procedures in Maple:

First, gambler decides the number of times to play $\Longrightarrow n$. We implement the following procedures in Maple:

- StPetePT(n, A) which inputs the number of allowed rounds in one game \boldsymbol{n} and the entrance fee \boldsymbol{A}. It outputs the probability table M of the outcomes of the game.

First, gambler decides the number of times to play $\Longrightarrow n$.
We implement the following procedures in Maple:

- StPetePT(n, A) which inputs the number of allowed rounds in one game \boldsymbol{n} and the entrance fee \boldsymbol{A}. It outputs the probability table M of the outcomes of the game.

Example

Say $n=6$ and $A=0$. Then, StPetePT $(6,0)$ outputs

$$
[[2,1 / 2],[4,1 / 4],[8,1 / 8],[16,1 / 16],[32,1 / 32],[32,1 / 32]]
$$

Next, we simulate the game in Maple:

- Simu1(M,n) takes any probability table M and runs the gamble n times. It outputs your total gain.

Next, we simulate the game in Maple:

- Simu1(M,n) takes any probability table M and runs the gamble n times. It outputs your total gain.
- $\operatorname{Simu}(\mathrm{M}, \mathrm{n}, \mathrm{N})$ runs the previous procedure N times. It outputs the total gain followed by the estimated probability that you will win some money.

Simulation (continued)

Next, we simulate the game in Maple:

- Simu1(M,n) takes any probability table M and runs the gamble n times. It outputs your total gain.
- $\operatorname{Simu}(\mathrm{M}, \mathrm{n}, \mathrm{N})$ runs the previous procedure N times. It outputs the total gain followed by the estimated probability that you will win some money.

[^0]
Simulation (continued)

Next, we simulate the game in Maple:

- Simu1(M,n) takes any probability table M and runs the gamble n times. It outputs your total gain.
- $\operatorname{Simu}(\mathrm{M}, \mathrm{n}, \mathrm{N})$ runs the previous procedure N times. It outputs the total gain followed by the estimated probability that you will win some money.

Example

Let
$M=[[2,1 / 2],[4,1 / 4],[8,1 / 8],[16,1 / 16],[32,1 / 32],[32,1 / 32]]$,
$n=100$, and $N=1,000$. Then, $\operatorname{Simu}(M, n, N)$ outputs

$$
101.512,0.915
$$

Simulation (continued)

Next, we simulate the game in Maple:

- Simu1(M,n) takes any probability table M and runs the gamble n times. It outputs your total gain.
- $\operatorname{Simu}(\mathrm{M}, \mathrm{n}, \mathrm{N})$ runs the previous procedure N times. It outputs the total gain followed by the estimated probability that you will win some money.

Example

Let
$M=[[2,1 / 2],[4,1 / 4],[8,1 / 8],[16,1 / 16],[32,1 / 32],[32,1 / 32]]$,
$n=100$, and $N=1,000$. Then, $\operatorname{Simu}(M, n, N)$ outputs

$$
\begin{aligned}
& 101.512,0.915 \\
& 103.256,0.92
\end{aligned}
$$

Next, we simulate the game in Maple:

- Simu1(M,n) takes any probability table M and runs the gamble n times. It outputs your total gain.
- $\operatorname{Simu}(\mathrm{M}, \mathrm{n}, \mathrm{N})$ runs the previous procedure N times. It outputs the total gain followed by the estimated probability that you will win some money.

Example

Let
$M=[[2,1 / 2],[4,1 / 4],[8,1 / 8],[16,1 / 16],[32,1 / 32],[32,1 / 32]]$, $n=100$, and $N=1,000$. Then, $\operatorname{Simu}(M, n, N)$ outputs

$$
\begin{aligned}
& 101.512,0.915 \\
& 103.256,0.92
\end{aligned}
$$

Spoiler Alert: Using symbolic computation, the exact probability is $0.9088 \ldots$

Let $M=\left[\left[M_{1}, p_{1}\right],\left[M_{2}, p_{2}\right], \cdots,\left[M_{r}, p_{r}\right]\right]$. Assume M_{1}, \cdots, M_{r} are integers.

Let $M=\left[\left[M_{1}, p_{1}\right],\left[M_{2}, p_{2}\right], \cdots,\left[M_{r}, p_{r}\right]\right]$. Assume M_{1}, \cdots, M_{r} are integers.

The probability generating function of M is the following

$$
P_{M}(x)=\sum_{i=1}^{r} p_{i} x^{M_{i}}
$$

Let $M=\left[\left[M_{1}, p_{1}\right],\left[M_{2}, p_{2}\right], \cdots,\left[M_{r}, p_{r}\right]\right]$. Assume M_{1}, \cdots, M_{r} are integers.

The probability generating function of M is the following

$$
P_{M}(x)=\sum_{i=1}^{r} p_{i} x^{M_{i}}
$$

Example

For

$$
M=[[2,1 / 2],[4,1 / 4],[8,1 / 8],[16,1 / 16],[32,1 / 32],[32,1 / 32]],
$$

we get

$$
P_{M}(x)=\frac{1}{2} x^{2}+\frac{1}{4} x^{4}+\frac{1}{8} x^{8}+\frac{1}{16} x^{16}+\frac{1}{16} x^{32}
$$

Symbolic Computation (continued)

- We are interested in winning, so we are interesting in the exponents that are positive.
- We are interested in winning, so we are interesting in the exponents that are positive.
- Denote $P_{M}(x)^{+}$to be the sum of the coefficients whose exponents are positive.

Symbolic Computation (continued)

- We are interested in winning, so we are interesting in the exponents that are positive.
- Denote $P_{M}(x)^{+}$to be the sum of the coefficients whose exponents are positive.

Example

For

$$
P_{M}(x)=\frac{1}{2} x^{-3}+\frac{1}{4} x^{-1}+\frac{1}{8} x^{3}+\frac{1}{16} x^{11}+\frac{1}{16} x^{27},
$$

we get

$$
P(x)^{+}=\frac{1}{8}+\frac{1}{16}+\frac{1}{16}=1 / 4
$$

- We are interested in winning, so we are interesting in the exponents that are positive.
- Denote $P_{M}(x)^{+}$to be the sum of the coefficients whose exponents are positive.
- If the gambler plays the game n times, then we would be interested in $\left(P_{M}(x)^{n}\right)^{+}$
- We are interested in winning, so we are interesting in the exponents that are positive.
- Denote $P_{M}(x)^{+}$to be the sum of the coefficients whose exponents are positive.
- If the gambler plays the game n times, then we would be interested in $\left(P_{M}(x)^{n}\right)^{+}$

Example

Playing the following

$$
P_{M}(x)=\frac{1}{2} x^{-3}+\frac{1}{4} x^{-1}+\frac{1}{8} x^{3}+\frac{1}{16} x^{11}+\frac{1}{16} x^{27}
$$

for $n=100$ times, we get the exact probability of 0.9088286275 .

Essentially, we are interested in calculating

$$
\left(P_{M}(x)^{n}\right)^{+}=\sum_{j=1}^{\infty} \operatorname{Coeff}_{x^{j}}\left(P_{M}(x)\right)=\cdots=\frac{1}{2 \pi i} \int_{|x|=1} \frac{\left(P_{M}(x)\right)^{n}}{x(x-1)} d x
$$

for $n \in \mathbb{N}$, where Coeff $_{x^{j}}\left(P_{M}(x)\right)$ is the coefficient of x_{j} in $P_{M}(x)$.

Using this *theorem*, we can get a good approximation for sufficiently large n.

Central Limit Theorem

Using this *theorem*, we can get a good approximation for sufficiently large n. From $n=1$ up to $n=200$:

(a) $[[-1,1 / 2],[2,1 / 2]]$

(d) $[[-1,7 / 8],[8,1 / 8]]$

(b) $[[-1,2 / 3],[3,1 / 3]]$

(e) $[[-1,8 / 9],[9,1 / 9]]$

(c) $[[-1,3 / 4],[4,1 / 4]]$

(f) $[[-1,9 / 10],[10,1 / 10]]$

Figure 1. The risk-averseness graphs for the corresponding gambles.

Conclusion

- Dice Game and St. Petersburg Paradox
- Dice Game and St. Petersburg Paradox
- Simulation, and Symbolic Computation

Thank You!

囯 Lucy Martinez and Doron Zeilberger．
How many dice rolls would it take to reach your favorite kind of number？
To appear in Maple Transactions， 2023.
圊 Lucy Martinez and Doron Zeilberger．
A guide to the risk－averse gambler and resolving the st． petersburg paradox once and for all．

囲 Noga Alon and Yaakov Malinovsky． Hitting a prime in 2.43 dice rolls（on average）．
The American Statistician， 2023.

Alon-Malinovsky

For $k \leq n \leq 6 k$ where n is non-prime, define $p(n, k)$ to be the probability that after k rolls, the running sum is n. Then,

Alon-Malinovsky

For $k \leq n \leq 6 k$ where n is non-prime, define $p(n, k)$ to be the probability that after k rolls, the running sum is n. Then,

$$
p(k, n)=\frac{1}{6} \sum_{i} p(k-1, n-i)
$$

where $i \in\{1,2, \cdots, 6\}$ such that $n-i$ is non-prime.

Alon-Malinovsky

For $k \leq n \leq 6 k$ where n is non-prime, define $p(n, k)$ to be the probability that after k rolls, the running sum is n. Then,

$$
p(k, n)=\frac{1}{6} \sum_{i} p(k-1, n-i)
$$

where $i \in\{1,2, \cdots, 6\}$ such that $n-i$ is non-prime.
Observe that $p(1,1)=p(1,4)=p(1,6)=1 / 6$.

Building Intuition

- Want: Find the discrete time τ in which $S_{i}=X_{1}+\cdots+X_{i}$ is a prime sum on the i-th roll

Building Intuition

- Want: Find the discrete time τ in which $S_{i}=X_{1}+\cdots+X_{i}$ is a prime sum on the i-th roll
- Goal: Calculate the expectation $E(\tau)$ of the hitting time τ where S_{i} first hits a prime sum

Building Intuition

- Want: Find the discrete time τ in which $S_{i}=X_{1}+\cdots+X_{i}$ is a prime sum on the i-th roll
- Goal: Calculate the expectation $E(\tau)$ of the hitting time τ where S_{i} first hits a prime sum
- *One can show*: To calculate the expectation $E(\tau)$ of the hitting time τ, we need
- Want: Find the discrete time τ in which $S_{i}=X_{1}+\cdots+X_{i}$ is a prime sum on the i-th roll
- Goal: Calculate the expectation $E(\tau)$ of the hitting time τ where S_{i} first hits a prime sum
- *One can show*: To calculate the expectation $E(\tau)$ of the hitting time τ, we need

$$
E(\tau)=\sum_{k \geq 1} p(k)=p(1)+p(2)+\cdots
$$

where $p(k)=P(\tau \geq k)$ is the probability that τ equals or exceeds a certain value k for $k=1,2, \cdots$

Building Intuition (continued)

Remember: To calculate the expectation $E(\tau)$ of the hitting time τ, we need

$$
E(\tau)=\sum_{k \geq 1} p(k)=p(1)+p(2)+\cdots
$$

where $p(k)=P(\tau \geq k)$ is the probability that τ equals or exceeds a certain value k for $k=1,2, \cdots$

Remember: To calculate the expectation $E(\tau)$ of the hitting time τ, we need

$$
E(\tau)=\sum_{k \geq 1} p(k)=p(1)+p(2)+\cdots
$$

where $p(k)=P(\tau \geq k)$ is the probability that τ equals or exceeds a certain value k for $k=1,2, \cdots$

It turns out,

$$
p(k+1):=\sum_{n: k \leq n \leq 6 k} p(k, n), \text { non-prime } n
$$

Why?

Remember: To calculate the expectation $E(\tau)$ of the hitting time τ, we need

$$
E(\tau)=\sum_{k \geq 1} p(k)=p(1)+p(2)+\cdots
$$

where $p(k)=P(\tau \geq k)$ is the probability that τ equals or exceeds a certain value k for $k=1,2, \cdots$

It turns out,

$$
p(k+1):=\sum_{n: k \leq n \leq 6 k} p(k, n), \text { non-prime } n
$$

Why? For non-prime n :

$$
\begin{aligned}
\boldsymbol{p}(3) & =\sum_{3 \leq n \leq 18} p(2, n) \\
& =p(2,4)+p(2,6)+\cdots+p(2,18)
\end{aligned}
$$

[^0]: Example
 Let
 $M=[[2,1 / 2],[4,1 / 4],[8,1 / 8],[16,1 / 16],[32,1 / 32],[32,1 / 32]]$,
 $n=100$, and $N=1,000$. Then, $\operatorname{Simu}(M, n, N)$ outputs

