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Suppose you have a fair standard die:
® Faces: {1,2,3,4,5,6}
® Set s = 0. Roll the die and add the outcome to s

® Keep rolling the die, add the outcome to s, and stop when s
is a prime number
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Example

Set s =0, and let’s roll a die:

® Say we get a 4, then s =4

® Roll again: say we get a 6, then s =4 +6 =10

® Roll again: say we get a 3, then s = 10 + 3 = 13 (prime!)
Total rolls: 3
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Set s =0, and let’s roll a die:
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Example 2

Set s =0, and let’s roll a die:
® Say we get a 4, then s =4
® Roll again: say we get a 6, then s =4 +6 =10
® Roll again: say we get a 4, then s =10+ 4 =14
® Keep rolling the die, and pretend we only got even numbers!

® We would not be able to get a prime sum.
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More Probabilities

e First roll: {2,3,5}, and with probability 1/2 the game lasts
one round

® Second roll:

Possible outcomes in the first round: {1,4,6}
How can we get a primesum if s=1,s =4 or s =67
® |f s =1, we must roll: {1,2,4,6}. Probability to get a prime
sumis1/6-4/6=1/9
® |f s =4, we must roll: {1,3}. Probability to get a prime sum
is1/6-2/6 =1/18
® |f s =6, we must roll: {1,5}. Probability to get a prime sum
is 1/6-2/6 =1/18
The probability that the game lasts 2 rounds is
1/94+1/184+1/18 =2/9

With probability 1 —1/2 —2/9 = 5/18, you need to continue
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Estimate

How long, in average, would it take until we hit a prime?

In other words, what is the expectation of the random variable
“duration of the prime-seeking” game?

Alon-Malinovsky (2022)

The expectation of this random variable (up to an additive error of
less than 107%) is 2.484
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Alon-Malinovsky

Let E(7) be the expectation of the hitting time 7 where the sum
first hits a prime number.

e Want to find K such that Ek is close to E(7). Here, Ex is an
approximation to the expectation of hitting a prime (up to an
additive error)

® To estimate Eyx, we find the first K values,
p(1),p(2),- -, p(K) where

plk+1)= > p(k.n)
n: k< n <6k

for non-prime n

® Turns out: Ejgop = 2.4284 is a good approximation
(Alon-Malinovsky)
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Questions

® What if you do not start at 0, but later on? For example, say
you want to start at 10® (non-prime), how long, on average,
would it take you until you hit a prime?

e What if instead of a standard die with six faces, you have a
different number of faces?

® What if instead of trying to hit a prime, you want to hit your
favorite numbers? Say a product of two distinct primes,
product of three distinct primes, perfect square (starting at a
non-square), etc.
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Symbolic Computation

Let g(k, n) be the probability that the game ended after k rounds
and that the running sum then was the prime n. Then, for a given
finite maximal number of rounds R:

R

Fr(t,x) == Z Z q(k, n)x" | t¥

k=1 kgngﬁk
n prime
Here, Fr(t,x) is a generating function that encodes the game:
For each k between 1 and R, we compute the probability that the
game ended at the running prime sum n.
Observe that F(1,1) =1 (sum of all the probabilities).
We used Maple to implement this function.
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® To compute Fg(t,x): Define
P(x) = g(x +x2 + x> + x* + x> + x°).

® \We need the operator P defined on polynomials such that it
extracts the terms with prime exponents.

P(x® +3x* +8x%) = x3 4+ 8x°
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Symbolic Computation (continued)

® To compute Fg(t,x): Define
P(x) = t(x +x* + x3 + x* + x5 + x9).

® We need the operator P defined on polynomials such that it
extracts the terms with prime exponents.

P(x3 4 3x* 4+ 8x°%) = x> + 8x°

® We will also need some sequence of polynomials Ng(x) and

Sr(x):
So(x) =1
Nr(x) =P (P(x)Sr-1(x))
Sr(x) == P(x)Sr-1(x) — Nr(x)
Fr(t,x) := Fr_1(t,x) + Ng(x)tR
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® First Round
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1
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® First Round

So(x) =1
Ni(x) = P(P(x)So(x))
_P<6(X—|—X +33 x4+ X+ x°) 1)
1 5
= 6(X2 +x3+x5)
51(x) = P(x)So(x) = Ni(x) = (X+X +x°)



First Two Rounds

® First Round

So(x) =1
Ni(x) = P(P(x)So(x))

_73((li(x+x2+x3—|—x4+x5+x6)-1)
— %(X2 —|—X3 +X5)
1
51(x) = P(x)%0(x) = Mi(x) = £(x +x* +x°%)

— F(t,x) = (é(% +x3 —l—x5)> t
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® Second Round
Na(x) = P(P(x)51(x))

1 1
:77(6(X—I—X2+X3—|—X4+x5—|—x6)-

gt x* -+ x6)>



First Two Rounds (continued)

® Second Round
Na(x) = P(P(x)51(x))
:P(é(x+x2+x3+x4+x5+x6)-é(x+x4+x6)>
1o, 13

= —=X"+ ==X +ix5+ix7+ix1
- 36 36 18 12 36

1



First Two Rounds (continued)

® Second Round
Na(x) = P(P(x)S1(x))
=P (é(x+x2+x3+x4+xs+x6)-

_ 1 2 1 3 1 5 1 7 1 11
=36 T3 T18° T12X T 3"
1 1 1 1 1 1
S _ 4 L) - .8 .9 - 10 U112
20) = 36" + g T X T T X T

1
6(X +x* x6)>



First Two Rounds (continued)

® Second Round
Na(x) = P(P(x)51(x))
=P (é(x+x2—|—x3+x4—l—x5+xﬁ)~é(x+x4—|—xﬁ)>

1l ., 15 1 5 1 72 1 4
=36 3" T18° T12X T3S

1 1 1 1 1 1
S(x) = —x® L 6y 8 Lo, L o 1
2(X) = 3 H gt g T T TN

— F(t,x) = (é(x2 +x3 +x5)> t

12

1o, 13, 15 1 7.1 1),
= — — — — t
+(36X +36X +18X +12X +36X



e First roll: {2,3,5}, and with probability 1/2 the game lasts
one round

® Second roll:

Possible outcomes in the first round: {1,4,6}
How can we get a prime sum if s=1,s =4 or s =67
® If s=1, we must roll: {1,2,4,6}. Probability to get a prime
sumis 1/6-4/6 =1/9
® |f s =4, we must roll: {1,3}. Probability to get a prime sum
is 1/6-2/6 =1/18
® |f s =6, we must roll: {1,5}. Probability to get a prime sum
is1/6-2/6 =1/18
The probability that the game lasts 2 rounds is
1/9+1/184+1/18=2/9



e First roll: {2,3,5}, and with probability 1/2 the game lasts
one round
® Second roll:
Possible outcomes in the first round: {1,4,6}
How can we get a prime sum if s=1,s =4 or s =67
® If s=1, we must roll: {1,2,4,6}. Probability to get a prime
sumis1/6-4/6 =1/9
® |f s =4, we must roll: {1,3}. Probability to get a prime sum
is 1/6-2/6 =1/18
® |f s =6, we must roll: {1,5}. Probability to get a prime sum
is1/6-2/6 =1/18
The probability that the game lasts 2 rounds is
1/9+1/184+1/18=2/9
Note: The coefficient of Fp(t,x) at t? was
1 1 1

1
2, -3, -5~ 7, =1
36~ 736 T8 T 12X T 36"



Non-rigorous Estimates - Results

Number of Faces Property Expected Duration

7 prime sum 2.1364 - --

12 prime sum 3.0814. ..

6 product of two 3.7889 - - -
distinct primes

6 product of three 17.616887 - - -
distinct primes

6 product of four 112.907872 - - -
distinct primes

6 perfect square 9.01861- - -




Non-rigorous Estimates - Results

Number of Faces Property Expected Duration

7 prime sum 2.1364 - --

12 prime sum 3.0814. ..

6 product of two 3.7889 - - -
distinct primes

6 product of three 17.616887 - - -
distinct primes

6 product of four 112.907872 - - -
distinct primes

6 perfect square 9.01861- - -

Note: To find the expected duration, we compute the partial
derivative with respect to t of Fg(t,x), evaluate at t = x =1, and
then divide by Fgr(1,1).
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Background

Say that we are tossing a coin = {H, T}.

If it lands on Heads = we get $2 and stop playing.
® Otherwise, we toss the coin again.

® |f it lands on Heads = we get $4 and stop playing.
Otherwise, we toss the coin again. And so on.

The rewards doubles each time.

Expected gain:

1 1 1 <1
o4 .44 2. o= — .2 =00,
y 2ty Atg 8t ;2 >

We would want to pay any amount A since co — A = oo.



The Finite Version

Fix a positive integer k and suppose the gambler lasted all k
rounds. Then, the expected gain is



The Finite Version

Fix a positive integer k and suppose the gambler lasted all k
rounds. Then, the expected gain is



The Finite Version

Fix a positive integer k and suppose the gambler lasted all k
rounds. Then, the expected gain is

k+1

kK11
27.2' 7 Zl_k—i—l
i=1

In this case, if the gambler pays any amount A, then to ensure
they do not lose money, A < k + 1.
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Question

For a given risk-averseness (the maximum probability of not
winning), how many rounds exactly should the gambler insist on

playing?

® Simulation
® Symbolic Computation

® Central Limit Theorem
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Simulation

First, gambler decides the number of times to play = n.
We implement the following procedures in Maple:
e StPetePT(n,A) which inputs the number of allowed rounds in
one game n and the entrance fee A. It outputs the
probability table M of the outcomes of the game.

Example
Say n =6 and A= 0. Then, StPetePT(6,0) outputs

[2,1/2],[4,1/4],[8,1/8],[16,1/16],[32,1/32],[32,1/32]]
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e Simul(M,n) takes any probability table M and runs the
gamble n times. It outputs your total gain.

® Simu(M,n,N) runs the previous procedure N times. It outputs
the total gain followed by the estimated probability that you
will win some money.

Example

Let

M = [12,1/2], [4,1/4], [8,1/8], 16, 1/16], [32, 1/32], [32, 1/32]],
n =100, and N = 1,000. Then, Simu(M,n,N) outputs
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Next, we simulate the game in Maple:
e Simul(M,n) takes any probability table M and runs the
gamble n times. It outputs your total gain.

® Simu(M,n,N) runs the previous procedure N times. It outputs
the total gain followed by the estimated probability that you
will win some money.

Example

Let
M = [12,1/2], [4,1/4], [8,1/8], 16, 1/16], [32, 1/32], [32, 1/32]],
n =100, and N = 1,000. Then, Simu(M,n,N) outputs

101.512,0.915



Simulation (continued)

Next, we simulate the game in Maple:
e Simul(M,n) takes any probability table M and runs the
gamble n times. It outputs your total gain.

® Simu(M,n,N) runs the previous procedure N times. It outputs
the total gain followed by the estimated probability that you
will win some money.

Example

Let
M = [12,1/2], [4,1/4], [8,1/8], 16, 1/16], [32, 1/32], [32, 1/32]],
n =100, and N = 1,000. Then, Simu(M,n,N) outputs

101.512,0.915
103.256,0.92



Simulation (continued)

Next, we simulate the game in Maple:

® Simul(M,n) takes any probability table M and runs the
gamble n times. It outputs your total gain.

¢ Simu(M,n,N) runs the previous procedure N times. It outputs
the total gain followed by the estimated probability that you
will win some money.

Example

Let

M = [12,1/2], 4,1/4], ,1/8], 16, 1/16],[32,1/32], [32, 1/32].
n =100, and N = 1,000. Then, Simu(M,n,N) outputs

101.512,0.915
103.256,0.92

Spoiler Alert: Using symbolic computation, the exact probability
is 0.9088 - - -
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Symbolic Computation

Let M = [[M1, p1], [M2, p2],- -+, [Mr, pr]]. Assume My, --- , M, are
integers.

The probability generating function of M is the following

Pu(x) = pixM
i=1

Example
For

M = [[2,1/2],[4,1/4],[8,1/8],[16,1/16], [32,1/32],[32,1/32]],

we get

1 1 1 1 1
Pu(x) = §X2 + ZX4 + §X8 + Exm + 1—6X32



Symbolic Computation (continued)

® We are interested in winning, so we are interesting in the
exponents that are positive.
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Symbolic Computation (continued)

® We are interested in winning, so we are interesting in the
exponents that are positive.

® Denote Py (x)" to be the sum of the coefficients whose
exponents are positive.

For

1 1 1 1 1
Pu(x) = EX_3 + Zx_l + §x3 + Exll + 1—6X277

we get

1 11
P(x)" ==+ — 4+ — —1/4
()T =gt tE =1



Symbolic Computation (continued)

® We are interested in winning, so we are interesting in the
exponents that are positive.

® Denote Py (x)" to be the sum of the coefficients whose
exponents are positive.

® |f the gambler plays the game n times, then we would be
interested in (Pp(x)")"



Symbolic Computation (continued)

® We are interested in winning, so we are interesting in the
exponents that are positive.

e Denote Py (x)" to be the sum of the coefficients whose
exponents are positive.

® |f the gambler plays the game n times, then we would be
interested in (Pp(x)")"

Playing the following

1 1 1 1 1
Pum(x) = EX_3 I Zx_l - §x3 + Exll + Ex”

for n = 100 times, we get the exact probability of 0.9088286275.



Advanced Computation

Essentially, we are interested in calculating

(Pu(x)")* ZCoeffX,(PM( )= = 1_/ de

27TI |x|=1 X

for n € N, where Coeff;(Pp(x)) is the coefficient of x; in Pp(x).



Central Limit Theorem

Using this *theorem*, we can get a good approximation for
sufficiently large n.



Central Limit Theorem

Using this *theorem*, we can get a good approximation for
sufficiently large n. From n =1 up to n = 200:

@ 6 80 100 130 10 180 180 200 100 260 30

(@ [[-1,1/2],[2.1/2]] () [[-1,2/3],[3,1/3]] (©[[-1.3/4]. [4.1/4]

(@ [[—1,7/8],[8,1/8]] (e) [—1,8/9],[9,1/9]] ® [[-1,9/10], [10, 1/10]]

Figure 1. The risk-averseness graphs for the corresponding gambles.



® Dice Game and St. Petersburg Paradox



Conclusion

® Dice Game and St. Petersburg Paradox

® Simulation, and Symbolic Computation



THANK YoOU!
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[d Lucy Martinez and Doron Zeilberger.
How many dice rolls would it take to reach your favorite kind
of number?
To appear in Maple Transactions, 2023.

[§ Lucy Martinez and Doron Zeilberger.
A guide to the risk-averse gambler and resolving the st.
petersburg paradox once and for all.

[§ Noga Alon and Yaakov Malinovsky.
Hitting a prime in 2.43 dice rolls (on average).
The American Statistician, 2023.
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Numerical Dynamic Programming

Alon-Malinovsky

For k < n < 6k where n is non-prime, define p(n, k) to be the
probability that after k rolls, the running sum is n. Then,

plk,m) = 2 3 (k1,1 )

where i € {1,2,--- ,6} such that n — i is non-prime.



Numerical Dynamic Programming

Alon-Malinovsky

For k < n < 6k where n is non-prime, define p(n, k) to be the
probability that after k rolls, the running sum is n. Then,

(ko) = 5 S plk—1,0—1)

where i € {1,2,---,6} such that n — /i is non-prime.

Observe that p(1,1) = p(1,4) = p(1,6) = 1/6.
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Building Intuition

e Want: Find the discrete time 7 in which §; = X1 +---+ X is
a prime sum on the j-th roll

® Goal: Calculate the expectation E(7) of the hitting time 7
where S; first hits a prime sum

® *One can show*: To calculate the expectation E(7) of the
hitting time 7, we need

E(r) =) _p(k) = p(1) +p(2) + -

k>1

where p(k) = P(7 > k) is the probability that 7 equals or
exceeds a certain value k for k =1,2,---



Building Intuition (continued)

Remember: To calculate the expectation E(7) of the hitting time
T, we need
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k>1

where p(k) = P(7 > k) is the probability that 7 equals or exceeds
a certain value k for k =1,2,---
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Building Intuition (continued)

Remember: To calculate the expectation E(7) of the hitting time
7, we need

=> p(k) =p(1) + p(2) + -

k>1

where p(k) = P(7 > k) is the probability that 7 equals or exceeds
a certain value k for k =1,2,---

It turns out,

p(k+1):= Z p(k, n), non-prime n
n: k< n <6k

Why? For non-prime n:

p(3)= > p(2,n)

3<n<18



	Game 1: Dice Problem
	Our Approach: Symbolic Computation
	Game 2: St. Petersburg Paradox

