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Game 1: Dice Problem
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• Set s = 0. Roll the die and add the outcome to s

• Keep rolling the die, add the outcome to s, and stop when s
is a prime number
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• Say we get a 4, then s = 4
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• Keep rolling the die, and pretend we only got even numbers!

• We would not be able to get a prime sum.
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More Probabilities

• First roll: {2, 3, 5}, and with probability 1/2 the game lasts
one round

• Second roll:

• If s = 1, we must roll: {1, 2, 4, 6}. Probability to get a prime
sum is 1/6 · 4/6 = 1/9

• If s = 4, we must roll: {1, 3}. Probability to get a prime sum
is 1/6 · 2/6 = 1/18

• If s = 6, we must roll: {1, 5}. Probability to get a prime sum
is 1/6 · 2/6 = 1/18
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More Probabilities

• First roll: {2, 3, 5}, and with probability 1/2 the game lasts
one round

• Second roll:

Possible outcomes in the first round: {1, 4, 6}
How can we get a prime sum if s = 1, s = 4 or s = 6?
• If s = 1, we must roll: {1, 2, 4, 6}. Probability to get a prime

sum is 1/6 · 4/6 = 1/9
• If s = 4, we must roll: {1, 3}. Probability to get a prime sum

is 1/6 · 2/6 = 1/18
• If s = 6, we must roll: {1, 5}. Probability to get a prime sum

is 1/6 · 2/6 = 1/18

The probability that the game lasts 2 rounds is
1/9 + 1/18 + 1/18 = 2/9

With probability 1− 1/2− 2/9 = 5/18, you need to continue
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Estimate

Question

How long, in average, would it take until we hit a prime?

In other words, what is the expectation of the random variable
“duration of the prime-seeking” game?

Alon-Malinovsky (2022)

The expectation of this random variable (up to an additive error of
less than 10−4) is 2.484



Alon-Malinovsky

Let E (τ) be the expectation of the hitting time τ where the sum
first hits a prime number.

• Want to find K such that EK is close to E (τ). Here, EK is an
approximation to the expectation of hitting a prime (up to an
additive error)

• To estimate EK , we find the first K values,
p(1), p(2), · · · , p(K )

• Turns out: E1000 = 2.4284 is a good approximation
(Alon-Malinovsky)
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Questions

• What if you do not start at 0, but later on? For example, say
you want to start at 1010 (non-prime), how long, on average,
would it take you until you hit a prime?

• What if instead of a standard die with six faces, you have a
different number of faces?

• What if instead of trying to hit a prime, you want to hit your
favorite numbers? Say a product of two distinct primes,
product of three distinct primes, perfect square (starting at a
non-square), etc.
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Let q(k,n) be the probability that the game ended after k rounds
and that the running sum then was the prime n. Then, for a given
finite maximal number of rounds R:

FR(t, x) :=
R∑

k=1

 ∑
k≤n≤6k
n prime

q(k , n)xn

 tk

Here, FR(t, x) is a generating function that encodes the game:
For each k between 1 and R, we compute the probability that the
game ended at the running prime sum n.
Observe that F (1, 1) = 1 (sum of all the probabilities).
We used Maple to implement this function.
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• To compute FR(t, x): Define
P(x) = 1

6(x + x2 + x3 + x4 + x5 + x6).

• We need the operator P defined on polynomials such that it
extracts the terms with prime exponents.
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• To compute FR(t, x): Define
P(x) = 1

6(x + x2 + x3 + x4 + x5 + x6).

• We need the operator P defined on polynomials such that it
extracts the terms with prime exponents.

Example

P(x3 + 3x4 + 8x5) = x3 + 8x5

• We will also need some sequence of polynomials NR(x) and
SR(x):

S0(x) := 1

NR(x) := P (P(x)SR−1(x))

SR(x) := P(x)SR−1(x)− NR(x)



Symbolic Computation (continued)

• To compute FR(t, x): Define
P(x) = 1

6(x + x2 + x3 + x4 + x5 + x6).

• We need the operator P defined on polynomials such that it
extracts the terms with prime exponents.

Example

P(x3 + 3x4 + 8x5) = x3 + 8x5

• We will also need some sequence of polynomials NR(x) and
SR(x):

S0(x) := 1

NR(x) := P (P(x)SR−1(x))

SR(x) := P(x)SR−1(x)− NR(x)

FR(t, x) := FR−1(t, x) + NR(x)tR .
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• First Round
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N1(x) = P(P(x)S0(x))
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)
=
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• First roll: {2, 3, 5}, and with probability 1/2 the game lasts
one round

• Second roll:

Possible outcomes in the first round: {1, 4, 6}
How can we get a prime sum if s = 1, s = 4 or s = 6?
• If s = 1, we must roll: {1, 2, 4, 6}. Probability to get a prime

sum is 1/6 · 4/6 = 1/9
• If s = 4, we must roll: {1, 3}. Probability to get a prime sum

is 1/6 · 2/6 = 1/18
• If s = 6, we must roll: {1, 5}. Probability to get a prime sum

is 1/6 · 2/6 = 1/18

The probability that the game lasts 2 rounds is
1/9 + 1/18 + 1/18 = 2/9

Note: The coefficient of F2(t, x) at t2 was
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The probability that the game lasts 2 rounds is
1/9 + 1/18 + 1/18 = 2/9

Note: The coefficient of F2(t, x) at t2 was

1

36
x2 +

1

36
x3 +

1

18
x5 +

1

12
x7 +

1

36
x11



Non-rigorous Estimates - Results

Number of Faces Property Expected Duration

7 prime sum 2.1364 · · ·
12 prime sum 3.0814 · · ·
6 product of two 3.7889 · · ·

distinct primes

6 product of three 17.616887 · · ·
distinct primes

6 product of four 112.907872 · · ·
distinct primes

6 perfect square 9.01861 · · ·

Note: To find the expected duration, we compute the partial
derivative with respect to t of FR(t, x), evaluate at t = x = 1, and
then divide by FR(1, 1).
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Game 2: St. Petersburg Paradox



Background

• Say that we are tossing a coin =⇒ {H,T}.

• If it lands on Heads =⇒ we get $2 and stop playing.

• Otherwise, we toss the coin again.

• If it lands on Heads =⇒ we get $4 and stop playing.
Otherwise, we toss the coin again. And so on.

• The rewards doubles each time.

• Expected gain:
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2
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4
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8
· 8 + · · · =

∞∑
i=1

1
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Background

• Say that we are tossing a coin =⇒ {H,T}.
• If it lands on Heads =⇒ we get $2 and stop playing.

• Otherwise, we toss the coin again.
• If it lands on Heads =⇒ we get $4 and stop playing.

Otherwise, we toss the coin again. And so on.

• The rewards doubles each time.

• Expected gain:

1

2
· 2 +

1

4
· 4 +

1

8
· 8 + · · · =

∞∑
i=1

1

2i
· 2i =∞.

We would want to pay any amount A since ∞− A =∞.



The Finite Version

Fix a positive integer k and suppose the gambler lasted all k
rounds. Then, the expected gain is

In this case, if the gambler pays any amount A, then to ensure
they do not lose money, A < k + 1.



The Finite Version

Fix a positive integer k and suppose the gambler lasted all k
rounds. Then, the expected gain is

k∑
i=1

1

2i
· 2i +

1

2k
· 2k =

k+1∑
i=1

1 = k + 1.

In this case, if the gambler pays any amount A, then to ensure
they do not lose money, A < k + 1.



The Finite Version

Fix a positive integer k and suppose the gambler lasted all k
rounds. Then, the expected gain is

k∑
i=1

1

2i
· 2i +

1

2k
· 2k =

k+1∑
i=1

1 = k + 1.

In this case, if the gambler pays any amount A, then to ensure
they do not lose money, A < k + 1.



Question

For a given risk-averseness (the maximum probability of not
winning), how many rounds exactly should the gambler insist on
playing?

• Simulation

• Symbolic Computation

• Central Limit Theorem



Question

For a given risk-averseness (the maximum probability of not
winning), how many rounds exactly should the gambler insist on
playing?

• Simulation

• Symbolic Computation

• Central Limit Theorem



Question

For a given risk-averseness (the maximum probability of not
winning), how many rounds exactly should the gambler insist on
playing?

• Simulation

• Symbolic Computation

• Central Limit Theorem



Question

For a given risk-averseness (the maximum probability of not
winning), how many rounds exactly should the gambler insist on
playing?

• Simulation

• Symbolic Computation

• Central Limit Theorem



Simulation

First, gambler decides the number of times to play =⇒ n.

• StPetePT(n,A) which inputs the number of allowed rounds in
one game n and the entrance fee A. It outputs the
probability table M of the outcomes of the game.
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Simulation

First, gambler decides the number of times to play =⇒ n.
We implement the following procedures in Maple:

• StPetePT(n,A) which inputs the number of allowed rounds in
one game n and the entrance fee A. It outputs the
probability table M of the outcomes of the game.

Example

Say n = 6 and A = 0. Then, StPetePT(6,0) outputs

[[2, 1/2], [4, 1/4], [8, 1/8], [16, 1/16], [32, 1/32], [32, 1/32]]



Simulation (continued)

Next, we simulate the game in Maple:

• Simu1(M,n) takes any probability table M and runs the
gamble n times. It outputs your total gain.

• Simu(M,n,N) runs the previous procedure N times. It outputs
the total gain followed by the estimated probability that you
will win some money.
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will win some money.

Example

Let
M = [[2, 1/2], [4, 1/4], [8, 1/8], [16, 1/16], [32, 1/32], [32, 1/32]],
n = 100, and N = 1, 000. Then, Simu(M,n,N) outputs
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Next, we simulate the game in Maple:

• Simu1(M,n) takes any probability table M and runs the
gamble n times. It outputs your total gain.
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the total gain followed by the estimated probability that you
will win some money.

Example

Let
M = [[2, 1/2], [4, 1/4], [8, 1/8], [16, 1/16], [32, 1/32], [32, 1/32]],
n = 100, and N = 1, 000. Then, Simu(M,n,N) outputs

101.512,0.915
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Next, we simulate the game in Maple:

• Simu1(M,n) takes any probability table M and runs the
gamble n times. It outputs your total gain.

• Simu(M,n,N) runs the previous procedure N times. It outputs
the total gain followed by the estimated probability that you
will win some money.

Example

Let
M = [[2, 1/2], [4, 1/4], [8, 1/8], [16, 1/16], [32, 1/32], [32, 1/32]],
n = 100, and N = 1, 000. Then, Simu(M,n,N) outputs

101.512,0.915

103.256,0.92



Simulation (continued)

Next, we simulate the game in Maple:

• Simu1(M,n) takes any probability table M and runs the
gamble n times. It outputs your total gain.

• Simu(M,n,N) runs the previous procedure N times. It outputs
the total gain followed by the estimated probability that you
will win some money.

Example

Let
M = [[2, 1/2], [4, 1/4], [8, 1/8], [16, 1/16], [32, 1/32], [32, 1/32]],
n = 100, and N = 1, 000. Then, Simu(M,n,N) outputs

101.512,0.915

103.256,0.92

Spoiler Alert: Using symbolic computation, the exact probability
is 0.9088 · · ·
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Let M = [[M1, p1], [M2, p2], · · · , [Mr , pr ]]. Assume M1, · · · ,Mr are
integers.
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Symbolic Computation

Let M = [[M1, p1], [M2, p2], · · · , [Mr , pr ]]. Assume M1, · · · ,Mr are
integers.

The probability generating function of M is the following

PM(x) =
r∑

i=1

pix
Mi

Example

For

M = [[2, 1/2], [4, 1/4], [8, 1/8], [16, 1/16], [32, 1/32], [32, 1/32]],

we get

PM(x) =
1

2
x2 +

1

4
x4 +

1

8
x8 +

1

16
x16 +

1

16
x32



Symbolic Computation (continued)

• We are interested in winning, so we are interesting in the
exponents that are positive.

• Denote PM(x)+ to be the sum of the coefficients whose
exponents are positive.

• If the gambler plays the game n times, then we would be
interested in (PM(x)n)+
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Symbolic Computation (continued)

• We are interested in winning, so we are interesting in the
exponents that are positive.

• Denote PM(x)+ to be the sum of the coefficients whose
exponents are positive.

Example

For

PM(x) =
1

2
x−3 +

1

4
x−1 +

1

8
x3 +

1

16
x11 +

1

16
x27,

we get

P(x)+ =
1

8
+

1

16
+

1

16
= 1/4

• If the gambler plays the game n times, then we would be
interested in (PM(x)n)+
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Symbolic Computation (continued)

• We are interested in winning, so we are interesting in the
exponents that are positive.

• Denote PM(x)+ to be the sum of the coefficients whose
exponents are positive.

• If the gambler plays the game n times, then we would be
interested in (PM(x)n)+

Example

Playing the following

PM(x) =
1

2
x−3 +

1

4
x−1 +

1

8
x3 +

1

16
x11 +

1

16
x27

for n = 100 times, we get the exact probability of 0.9088286275.



Advanced Computation

Essentially, we are interested in calculating

(PM(x)n)+ =
∞∑
j=1

Coeffx j (PM(x)) = · · · =
1

2πi

∫
|x |=1

(PM(x))n

x(x − 1)
dx

for n ∈ N, where Coeffx j (PM(x)) is the coefficient of xj in PM(x).



Central Limit Theorem

Using this *theorem*, we can get a good approximation for
sufficiently large n.



Central Limit Theorem

Using this *theorem*, we can get a good approximation for
sufficiently large n. From n = 1 up to n = 200:
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• Simulation, and Symbolic Computation



Thank You!



Resources I

Lucy Martinez and Doron Zeilberger.
How many dice rolls would it take to reach your favorite kind
of number?
To appear in Maple Transactions, 2023.

Lucy Martinez and Doron Zeilberger.
A guide to the risk-averse gambler and resolving the st.
petersburg paradox once and for all.

Noga Alon and Yaakov Malinovsky.
Hitting a prime in 2.43 dice rolls (on average).
The American Statistician, 2023.
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Numerical Dynamic Programming

Alon-Malinovsky

For k ≤ n ≤ 6k where n is non-prime, define p(n, k) to be the
probability that after k rolls, the running sum is n. Then,

p(k , n) =
1

6

∑
i

p(k − 1, n − i)

where i ∈ {1, 2, · · · , 6} such that n − i is non-prime.

Observe that p(1, 1) = p(1, 4) = p(1, 6) = 1/6.



Building Intuition

• Want: Find the discrete time τ in which Si = X1 + · · ·+ Xi is
a prime sum on the i-th roll

• Goal: Calculate the expectation E (τ) of the hitting time τ
where Si first hits a prime sum

• *One can show*: To calculate the expectation E (τ) of the
hitting time τ , we need
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Building Intuition

• Want: Find the discrete time τ in which Si = X1 + · · ·+ Xi is
a prime sum on the i-th roll

• Goal: Calculate the expectation E (τ) of the hitting time τ
where Si first hits a prime sum

• *One can show*: To calculate the expectation E (τ) of the
hitting time τ , we need

E (τ) =
∑
k≥1

p(k) = p(1) + p(2) + · · ·

where p(k) = P(τ ≥ k) is the probability that τ equals or
exceeds a certain value k for k = 1, 2, · · ·
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It turns out,

p(k + 1) :=
∑
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p(k , n), non-prime n

Why?



Building Intuition (continued)

Remember: To calculate the expectation E (τ) of the hitting time
τ , we need

E (τ) =
∑
k≥1

p(k) = p(1) + p(2) + · · ·

where p(k) = P(τ ≥ k) is the probability that τ equals or exceeds
a certain value k for k = 1, 2, · · ·

It turns out,

p(k + 1) :=
∑

n: k≤ n ≤6k
p(k , n), non-prime n

Why? For non-prime n:

p(3) =
∑

3≤n≤18
p(2, n)

= p(2, 4) + p(2, 6) + · · ·+ p(2, 18)
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